

"Decenio de la Igualdad de Oportunidades para mujeres y hombres" "Año de la recuperación y consolidación de la economía peruana"

NIR 66/2024-2025-ASISP/DIP

CENTRALES HIDROELÉCTRICAS DEL PERÚ

Distribución de energía en el ámbito nacional Infraestructura de recarga para vehículos eléctricos

11 de marzo del 2025

ÍNDICE

	Presentación	3
1.	Aspectos generales	4
2.	Centrales hidroeléctricas en el Perú	5
	2.1 Marco normativo aplicado	5
	2.2 Indicadores de la generación eléctrica	9
	2.3 Centrales hidroeléctricas convencionales en operación	12
	2.4 Centrales hidroeléctricas concesionadas mediante subasta RER en operación. Año 2024.	16
	2.5 Proyectos de centrales hidroeléctricas al mes de diciembre 2024	19
3.	Infraestructura para recarga de vehículos eléctricos	20
	3.1 Marco normativo aplicado	20
	3.2 La infraestructura de carga de vehículos eléctricos como factor para el impulso de la movilidad eléctrica	21
	3.3 Relación de las estaciones de recarga de vehículos eléctricos en operación en el país	23

PRESENTACIÓN

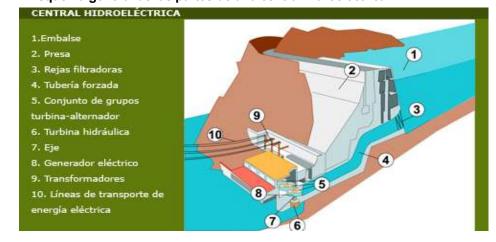
El Departamento de Investigación Parlamentaria, a través del Área de Servicios de Investigación y Seguimiento Presupuestal, ha elaborado la presente Nota de Información Referencial, con el objetivo de brindar información sobre las centrales hidráulicas de generación eléctrica y sus principales características de ubicación, potencia instalada y su operación, en el marco de la normativa vigente.

Asimismo, se incluye información sobre la infraestructura existente para la recarga de vehículos eléctricos o híbridos.

Para lo cual, se ha consultado la información disponible en las fuentes oficiales y especializadas; cuyas referencias se consignan en el presente documento.

Esperamos que, a través de la información brindada, se contribuya a la labor parlamentaria.

1. ASPECTOS GENERALES


La generación de electricidad a partir de la energía cinética del agua en movimiento es una de las principales fuentes de energía renovable del mundo¹ porque no contamina el agua ni la atmósfera, contribuye a la mitigación del cambio climático y permite la recuperación de tierras y el riego en épocas de seguía.

La infraestructura que se utiliza para ello, son las centrales hidroeléctricas. Para su funcionamiento, el agua se conduce a la central hidroeléctrica, desde una represa, a través de un canal o tubería; activando las turbinas hidráulicas conectadas a alternadores generando electricidad. La electricidad se transforma y se emite a las líneas de transmisión para su distribución a los usuarios.

Principales tipos de centrales hidroeléctricas según la forma en que se utiliza el caudal de agua:

- Central de pasada, son las que utilizan directamente el caudal natural de un río, cuya agua se canaliza hacia las turbinas y luego se devuelve al caudal natural aguas abajo de la central.
- Central de embalse, funciona a través de la acumulación del agua de diversas fuentes, en un embalse, natural o artificial (represa), desde donde fluye para activar las turbinas y, finalmente, volver al río. Por sus características, estas centrales, permiten el control de la producción de electricidad.
- Central de almacenamiento. Este tipo de centrales tiene dos embalses a distinta altura, el segundo de los cuales sirve como reserva energética; lo cual permite que, en momentos de menor demanda energética, el agua que ya ha caído puede hacerse fluir de nuevo hacia la cuenca río arriba, utilizando las mismas turbinas que, esta vez, actúan como un sistema de bombeo eléctrico. Así también, el agua puede volver a estar disponible para la producción de electricidad cuando la demanda es mayor. Incluso, pueden acoplarse con una central eólica, ya que la electricidad generada en momentos de viento sostenido puede utilizarse para accionar las turbinas de bombeo; cuando no hay viento, se genera electricidad con las turbinas hidroeléctricas, incluso a muy corto plazo.

Esquema general de las partes de una central hidroeléctrica

Fuente: IAgua. EdukaMadrid

ÁREA DE SERVICIOS DE INVESTIGACIÓN Y SEGUIMIENTO PRESUPUESTAL

¹ Fuente: ENEL Green Power. https://www.enelgreenpower.com/es

2. CENTRALES HIDROELÉCTRICAS EN EL PERÚ

2.1 Marco normativo aplicado

a) Decreto Ley 25844. Ley de Concesiones Eléctricas²

Publicado el 19 de noviembre de 1992.

Esta norma tiene el objetivo de establecer el marco legal para promover la inversión en obras de generación, transmisión y distribución de electricidad en el Perú, entendiendo que el servicio público de electricidad es de utilidad pública.

Según el artículo 2° del DL 25844, modificado por la Ley 28842³ (Ley para asegurar el desarrollo eficiente de la Generación Eléctrica) establece que los servicios públicos de electricidad son:

- a) El suministro regular de energía eléctrica para uso colectivo o destinado al uso colectivo, hasta los límites de potencia fijados por el Reglamento; y,
- b) La transmisión y distribución de electricidad.

En referencia a la promoción de los proyectos de centrales hidroeléctricas, la Ley de Concesiones Eléctricas regula el otorgamiento de concesiones para el uso de recursos hídricos con fines de generación, diferenciando entre:

- a) autorizaciones (para centrales menores a 500 KW)
- b) concesiones definitivas (para centrales mayores a 500 KW).

El Artículo 3 de la Ley de Concesiones Eléctricas, DL 25844 (modificado por la Decreto Legislativo 1002⁴, Decreto Legislativo de promoción de la inversión para la generación de electricidad con el uso de energías renovables)

Artículo 3.- Se requiere concesión definitiva para el desarrollo de cada una de las siguientes actividades:

- a) La generación de energía eléctrica que utilice recursos hidráulicos, con potencia instalada mayor de 500 KW;
- b) La transmisión de energía eléctrica, cuando las instalaciones afecten bienes del Estado y/o requieran la imposición de servidumbre por parte de éste;
- c) La distribución de energía eléctrica con carácter de Servicio Público de Electricidad, cuando la demanda supere los 500 KW; y,
- d) La generación de energía eléctrica con recursos Energéticos Renovables conforme a la Ley de la materia, con potencia instalada mayor de 500 KW.

Estas concesiones pueden ser otorgadas a empresas públicas o privadas, asegurando que el uso del agua para generación eléctrica sea compatible con otros usos, como el consumo humano y la agricultura.

_

² Decreto Ley 25844. Ley de Concesiones Eléctricas. https://spij.minjus.gob.pe/spij-ext-web/#/detallenorma/H756722

³ Ley 28842, Ley para asegurar el desarrollo eficiente de la Generación Eléctrica (23/7/2006) https://spij.minjus.gob.pe/spij-ext-web/#/detallenorma/H921869

⁴ Decreto Legislativo 1002. Decreto Legislativo de promoción de la inversión para la generación de electricidad con el uso de energías renovables (2/5/2008) https://spii.minjus.gob.pe/spij-ext-web/#/detallenorma/H964403

El Estado, a través del Ministerio de Energía y Minas, conjuntamente, con el Organismo Supervisor de la Inversión en Energía y Minería (OSINERGMIN) supervisa el cumplimiento de normas ambientales y de sostenibilidad en la construcción y operación de estas centrales.

Además, la Ley de Concesiones Eléctricas establece que las centrales hidroeléctricas pueden operar en un esquema de libre mercado o bajo regulaciones específicas si abastecen el servicio público de electricidad.

También promueve la inversión en energías renovables, incluyendo las pequeñas centrales hidroeléctricas (menores o iguales a 20 MW), que pueden beneficiarse de incentivos a través de las subastas de Recursos Energéticos Renovables (RER).

b) <u>Decreto Supremo 009-93-EM. Reglamento de la Ley de Concesiones Eléctricas⁵</u>

Publicado el 25 de febrero de 1993.

Entre otros aspectos relevantes, el Artículo 110° de esta norma (modificada por el Decreto Supremo 032-2001-EM, por el que se modifican artículos del Reglamento de la Ley de Concesiones Eléctricas)⁶ establece la forma de cálculo de la potencia firme de las unidades generadoras; entre ellas, las unidades hidráulicas:

"Artículo 110.- La potencia firme de cada una de las unidades generadoras del sistema se calculará según los siguientes criterios y procedimientos:

(...)

- b) La Potencia Firme de una unidad hidráulica será igual al producto de la Potencia Garantizada por el factor de presencia.
- I. El factor de presencia toma en cuenta la disponibilidad de la unidad o central generadora en el mes de cálculo, cuyo valor será igual a uno (1.0) si la indisponibilidad total no es superior a quince (15) días consecutivos. Cuando la indisponibilidad total supere los quince (15) días consecutivos, el factor de presencia mensual será el promedio aritmético de los factores diarios al mes, cuyos valores serán igual a uno (1.0) si la central despachó al menos en el 50% del período de duración de las horas de punta del sistema y con al menos el 15% de su potencia efectiva. En caso de no cumplirse estas dos últimas condiciones o una de ellas, el factor diario será igual a cero (0.0).
- II. La energía garantizada de la central se determina según el siguiente procedimiento:
- Se calcula, para cada mes de la estadística hidrológica, el caudal natural afluente a la central hidráulica en evaluación para la probabilidad de excedencia mensual dada
- 2) Teniendo en cuenta los reservorios estacionales anuales y mensuales, incluyendo los reservorios estacionales con capacidad de regulación horaria, se procede a simular, para los doce (12) meses del año, la operación óptima de la central de los caudales determinados en el punto anterior y el manejo óptimo de los reservorios estacionales. Para efectos de simulación, se asume que al inicio del año considerado, todos los reservorios se encuentran en su nivel más probable de

-

⁵ Decreto Supremo Nº 009-93-EM Reglamento de la Ley de Concesiones Eléctricas.

⁶ Decreto Supremo Nº 032-2001-EM Modifican artículo del Reglamento de la Ley de Concesiones Eléctricas. https://spij.minjus.gob.pe/spij-ext-web/#/detallenorma/H809111

- operación de los últimos diez (10) años y que el volumen de dichos reservorios al final del año es igual al volumen mínimo de los últimos diez (10) años.
- 3) El proceso de simulación para los 12 meses del año, mencionado en el párrafo que antecede, considerará los mantenimientos programados de las unidades a efectos de no sobrestimar la disponibilidad de la energía.
- 4) Como resultado de la operación óptima de la central a lo largo del año en evaluación, se obtienen las energías garantizadas por la central en cada mes.
- 5) La Energía Garantizada por la central, para el período de evaluación, será igual a la suma de las energías de los meses que conforman dicho período.
- III. La Energía Garantizada por la central durante el período de evaluación, es igual a la suma de la energía de pasada, más la energía de los reservorios estacionales con capacidad de regulación horaria para la probabilidad de excedencia mensual dada. El período de evaluación comprenderá los seis (6) meses más críticos de la oferta hidrológica.

Se considerará como reservorios estacionales con capacidad de regulación horaria, a aquellos cuya agua desembalsada está a disposición de la central en un tiempo inferior a veinticuatro (24) horas. La energía de los demás reservorios estacionales estará considerada en la energía de pasada.

- IV. La Potencia Garantizada de una central será igual a la suma de la Potencia Garantizada como una central de pasada, más la Potencia Garantizada por los reservorios horarios y reservorios estacionales con capacidad de regulación horaria. La Potencia Garantizada se calculará para el período de horas de regulación y no debe superar a la Potencia Efectiva de la Central.
- V. La Potencia Garantizada como una central de pasada es igual a la energía de pasada durante las horas de regulación dividida por las horas de regulación.
- VI. La Potencia Garantizada con los reservorios horarios y reservorios estacionales con capacidad de regulación horaria, es igual a la energía máxima almacenable en cada uno de estos reservorios para la probabilidad de excedencia dada, entre las horas de regulación.

c) Ley 28832. Ley para asegurar el desarrollo eficiente de la Generación Eléctrica⁷

Publicada el 23 de julio del 2006

Esta norma tiene el objeto de adoptar las medidas necesarias que propicien la competencia en el mercado de generación eléctrica; y perfeccionar las reglas establecidas en la Ley de Concesiones Eléctricas para asegurar una generación eléctrica eficiente y suficiente; reducir la vulnerabilidad del sistema eléctrico peruano a la volatilidad de precios y a los riesgos de racionamiento prolongado. Se busca principalmente, asegurar al consumidor final una tarifa eléctrica más competitiva.

La norma, establece mecanismos para reducir la intervención administrativa en la determinación de precios de generación eléctrica, considerando que éstos deben ser fijados por las soluciones del mercado.

La ley establece mecanismos para incentivar la inversión en proyectos de generación eléctrica, en general, incluyendo las centrales hidroeléctricas, mediante

-

⁷ Ley 28832. Ley para asegurar el desarrollo eficiente de la Generación Eléctrica https://spij.minjus.gob.pe/spij-ext-web/#/detallenorma/H921869

la promoción de contratos de suministro a largo plazo, que garanticen estabilidad en la inversión.

Asimismo, incluye mecanismos para asegurar que la producción hidroeléctrica se integre de manera eficiente en la matriz energética, equilibrando costos y disponibilidad de recursos hídricos. De esta manera, la ley garantiza que las hidroeléctricas sigan siendo una fuente confiable y competitiva dentro del sistema eléctrico peruano.

CUARTA.- Promoción de proyectos hidroeléctricos

- El Ministerio, dentro de su función promotora de nuevas inversiones, deberá implementar la evaluación del potencial nacional de proyectos hidroeléctricos y de fuentes no convencionales de energía, auspiciando los producidos con energía renovable, y poner a disposición de los futuros inversionistas una cartera de proyectos de inversión con perfiles desarrollados hasta el nivel de prefactibilidad.
- El Ministerio establecerá los procedimientos estandarizados para la aprobación de estudios de impacto ambiental, en plazos predeterminados, para facilitar las inversiones.
- El Ministerio establecerá en un plazo no mayor de noventa (90) días, las condiciones y términos para posibilitar un mecanismo de iniciativas privadas de Clientes Libres para aportes financieros destinados a inversiones en proyectos de ampliación de generación en empresas del Estado, que tendrán carácter reembolsable.
- d) <u>Ley 32249</u>. Ley que modifica la <u>Ley 28832</u> para asegurar el desarrollo eficiente de la generación eléctrica, a fin de garantizar el abastecimiento seguro, confiable y eficiente del suministro eléctrico y promover la diversificación de la matriz energética⁸

Publicada el 19 de enero de 2025.

Esta ley modifica la Ley 28832 con el objetivo de garantizar un suministro eléctrico seguro, confiable y eficiente, promoviendo la diversificación de la matriz energética en el país.

Se establecen modificaciones para la comercialización de potencia y energía; así como las posibilidades para los contratos que pueden efectuar los generadores. Se permite a las empresas distribuidoras definir sus requerimientos y modalidades de contratación, incluyendo la compra en bloques horarios, de energía o de potencia y energía, de forma separada o conjunta⁹.

Además, se establecen plazos específicos para el inicio de licitaciones y la duración de los contratos, promoviendo una planificación más eficiente. Se incorpora la figura de proveedores de servicios complementarios, para prestar servicios de transporte y suministro de electricidad desde la generación hasta la demanda, mejorando la calidad y seguridad del sistema eléctrico.

Se deroga el artículo 2.2 del Decreto Legislativo 1002, eliminando incentivos especiales para proyectos de energías renovables, con el fin de que compitan en igualdad de condiciones con otras fuentes de energía.

.

⁸ Ley 32249. (19/1/2025) https://spij.minjus.gob.pe/spij-ext-web/#/detallenorma/H1394634

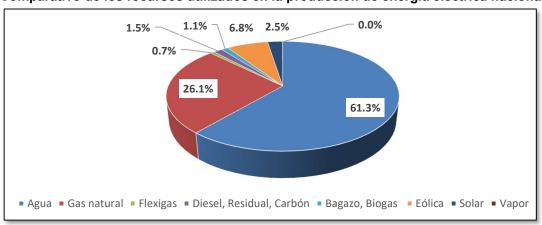
⁹ Fuente: https://www.echecopar.com.pe/publicaciones-se-modifica-la-ley-n-o-28832-para-asegurar-el-desarrollo-eficiente-de-la-generacion-electrica.html

2.2 Indicadores de la generación eléctrica

Según el Ministerio de Energía y Minas, en su Informe "Principales Indicadores del Sector Eléctrico a Nivel Nacional. Enero 2025" que contiene cifras preliminares al mes de diciembre 2024; la generación de energía eléctrica total en ese mes fue de 5,497 GWh.

- El 97% de ese total generado fue destinado al mercado eléctrico
- El 3% complementario corresponde a la generación de las unidades de las empresas industriales (mineras, azucareras, petroleras, etc.), energía utilizada para su propia actividad;

Respecto a la generación de energía, las centrales hidroeléctricas produjeron 3,367 GWh del total generado.


Producción de energía eléctrica nacional según recurso utilizado

Recurso energético	Producción (GWh)	Participación %
Agua	3,367	61.25%
Gas natural	1,437	26.14%
Flexigas	39	0.71%
Diesel, Residual, Carbón	80	1.46%
Bagazo, Biogás	63	1.15%
Eólica	374	6.80%
Solar	135	2.46%
Vapor	2	0.04%
Total	5,497	100.00%

Fuente: Ministerio de Energía y Minas

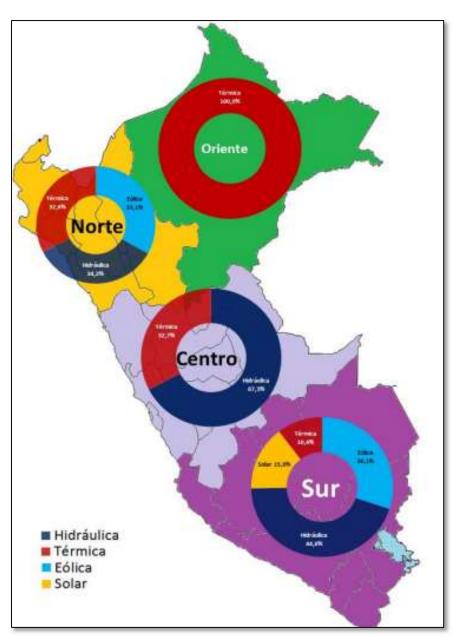
Elaboración: ASISP

Comparativo de los recursos utilizados en la producción de energía eléctrica nacional

Fuente: Ministerio de Energía y Minas

Elaboración: ASISP

¹⁰ Fuente: Principales Indicadores del Sector Eléctrico a Nivel Nacional. Enero 2025. (MINEM) https://cdn.www.qob.pe/uploads/document/file/7696434/5357964-cifras-preliminares-del-sector-electrico-diciembre-2024.pdf


Producción eléctrica por región y origen en el país (GWh)

Zona	Eólica	Hidráulica	Solar	Térmica	Total
Norte	102	105	0.1	100	308
Centro	-	2,859	0.2	1,387	4,247
Sur	272	403	135	94	904
Oriente	-	-	-	39	39
Total Nacional	374	3,367	135	1,621	5,497

Fuente: Ministerio de Energía y Minas

Elaboración: ASISP

Producción eléctrica por región y origen en el país (GWh)

Fuente: Ministerio de Energía y Minas

Elaboración: ASISP

De acuerdo a la normatividad vigente, respecto al régimen aplicado en la concesión otorgada para la construcción y operaciones de centrales hidroeléctricas para la generación de energía; éstas se pueden clasificar en: centrales hidroeléctricas convencionales y centrales hidroeléctricas por subasta RER¹¹.

- Las centrales hidroeléctricas convencionales tienen las siguientes características principales:
 - Son operadas por empresas privadas bajo un esquema de mercado libre o regulado
 - Se rigen por las condiciones del mercado eléctrico mayorista y pueden vender su energía mediante contratos bilaterales o al precio definido por el regulador (OSINERGMIN).
 - No reciben incentivos específicos del Estado.
 - Generalmente, tienen capacidades de potencia instalada mayores a 20 MW.
- Las centrales hidroeléctricas por subasta RER (Energías Renovables No Convencionales):
 - Tienen el objetivo es diversificar la matriz energética y promover fuentes renovables de generación eléctrica.
 - Participan en subastas de Recursos Energéticos Renovables (RER) organizadas por el Estado peruano a través de OSINERGMIN.
 - Reciben contratos a largo plazo asegurando estabilidad en la inversión.
 - Solo pueden participar centrales menores o iguales a 20 MW de capacidad instalada.
 - Reciben incentivos del Estado a través de tarifas garantizadas.

El Decreto Legislativo N° 1002 promueve el desarrollo de la Generación Eléctrica con Recursos Energéticos Renovables (RER). Este dispositivo tiene por objeto promover el aprovechamiento de los Recursos Energéticos Renovables (RER) para mejorar la calidad de vida de la población y proteger el medio ambiente, mediante la promoción de la inversión en proyectos de generación de energía eléctrica para la producción de electricidad. 12

En general, las centrales hidroeléctricas son una de las principales fuentes de suministro de energía al Sistema Eléctrico Interconectado Nacional (SEIN) del Perú; ayudan a mantener la estabilidad de frecuencia y voltaje, reduciendo la dependencia de plantas termoeléctricas y garantizando un suministro confiable para el desarrollo del país.

Muchas centrales, incluyen en su infraestructura, sistemas de almacenamiento y embalse de agua, lo que permite asegurar mayor producción eléctrica que aquella que depende de otras fuentes, como la energía solar o la energía eólica.

Esto es posible, principalmente, por su capacidad para generar energía de manera continua y a gran escala; garantizando estabilidad en el abastecimiento eléctrico; y contribuyendo a favorecer una matriz de energía más limpia y sostenible, porque disminuyen el uso de combustibles fósiles, como los hidrocarburos.

¹² lbíd.

_

¹¹ Fuente: OSINERGMIN. División de Supervisión de Electricidad. "Centrales de Generación Eléctrica con Recursos Energéticos Renovables" (2020) https://www.osinergmin.gob.pe/seccion/centro_documental/electricidad/Documentos/Publicaciones/Compendio-

2.3 Centrales hidroeléctricas convencionales en operación 13

CENTRAL HIDROELÉCTRICA	TIPO DE CENTRAL	EMPRESA CONCESIONARIA	REGIÓN	PROVINCIAS	RECURSO HÍDRICO	POTENCIA INSTALADA
C.H. Chaglla	Central hidroeléctrica con embalse	GENERACIÓN HUALLAGA S.A.	Huánuco	Huánuco y Pachitea	Río Huallaga	456 MW (450 MW y 6 MW)
C.H. Cerro del Águila	Hidráulica de embalse	CERRO DEL ÁGUILA S. A	Huancavelica	Tayacaja	Río Mantaro	525 MW
C.H. Quitaracsa	Hidráulica de pasada	ENGIE (ANTES ENERSUR S.A.)	Ancash	Huaylas	Río Quitaracsa	112 MW
C.H. Santa Teresa	Hidráulica de embalse	INLAND ENERGY S.A.C.	Cuzco	Urubamba	Río Vilcanota	98,12 MW
C.H. Cheves	Hidráulica de embalse	STATKRAFT (ANTES SN POWER)	Lima	Huaura	Ríos Huaura y Checras	168,2 MW
C.H. Rapaz II	C.H. Rapaz II EMPRESA COMUNAL HIDROELÉCTRICA SAN CRISTÓBAL DE RAPAZ		Lima	Oyón	Río Yuracyacu	1,25 MW
C.H. Pátapo	Derivación	HYDRO PÁTAPO S.A.C	Lambayeque	Chiclayo	Canal Taymi	1 MW
Mini C.H. Cerro del Águila	Hidráulica de embalse	KALLPA GENERACIÓN S.A	Huancavelica	Tayacaja	Río Mantaro	10 MW
C.H. Marañón	Derivación con regulación diaria	HIDROELÉCTRICA MARAÑÓN S.R.L.	Huánuco	Huamalíes	Río Marañón	18,4 MW
C.H. Carpapata III Hidráulica de Pasada UNACEM (ANTES GENERACIÓN ELÉCTRICA ATOCONGO S.A.)		Junín	Tarma	Río Huasahuasi	12,8 MW	

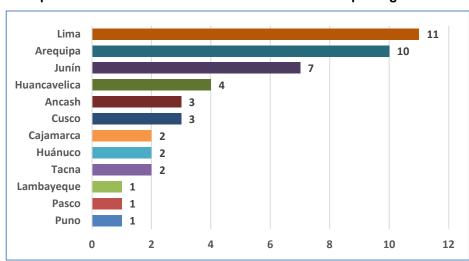
¹³ Fuente: Órgano Supervisor de la Inversión en Energía y Minas (OSINERGMIN) "Supervisión de contratos de proyectos de generación y transmisión de energía eléctrica en operación" (Noviembre, 2024) https://www.osinergmin.gob.pe/seccion/centro documental/electricidad/Documentos/Publicaciones/Compendio-Proyectos-GTE-Operacion.pdf

C.H. Machu Picchu II	Hidráulica de embalse	EGEMSA	Cusco	Urubamba	Río Urubamba (Vilcanota)	102 MW
C.H. Huanza	Hidráulica de pasada	EMPRESA GENERACIÓN HUANZA S. A	Lima	Huarochirí	Ríos Pallca y Conay	90,6 MW
C.H. El Platanal	Hidráulica de embalse	CELEPSA	Lima	Cañete	Rio Cañete	220 MW
C.H. Yuncán	Hidráulica de embalse	ENGIE	Pasco	Pasco	Rios Huachón y Paucartambo	130 MW
C.H. Huanchor	Hidráulica de pasada	HIDROELÉCTRICA HUANCHOR SAC	Lima	Huarochirí	Rio Rímac	18.4 MW
C.H. Machu Picchu	Hidráulica de pasada	EGEMSA	Cusco	Urubamba	Río Vilcanota	90.6 MW
C.H. Yanango	Hidráulica de pasada	CHINANGO S.A.C	Junín	Chanchamayo	Ríos Tarma y Yanango	43 MW
C.H. Chimay	Hidráulica de embalse	CHINANGO S.A.C	Junín	Jauja	Rio Tulumayo	153 MW
C.H. San Gabán II	Hidráulica de embalse	SAN GABÁN	Puno	Carabaya	Rio San Gabán	110 MW
C.H. Charcani I	Hidráulica de embalse	EGASA	Arequipa	Arequipa	Río Chili	1.8 MW
C.H. Gallito Ciego	Hidráulica de embalse	STATKRAFT	Cajamarca	Contumazá	Rio Jequetepeque, Reservorio Gallito Ciego	34 MW
C.H. Cahua	Hidráulica de pasada	STATKRAFT	Lima	Cajatambo	Río Calzoni	43.6 MW
C.H. Carhuaquero	Hidráulica	ORAZUL ENERGY PERÚ	Cajamarca	Chota	Río Chancay	95.1 MW
C.H. Charcani V	Hidráulica de embalse	EGASA	Arequipa	Arequipa	Reservorio Aguada Blanca	145.5 MW
C.H. Restitución	Hidráulica de embalse	ELECTROPERÚ	Huancavelica	Tayacaja	Rio Mantaro	210 MW

C.H. Charcani VI	Hidráulica de pasada	EGASA	Arequipa	Arequipa	Río Chili	9 MW
C.H. Mantaro	Hidráulica de embalse	ELECTROPERÚ	Huancavelica	Tayacaja	Rio Mantaro	798 MW
C.H. Matucana	Hidráulica de embalse	ENEL GENERACIÓN PERÚ	Lima	Huarochirí	Rio Rímac y embalse Yuracmayo	120 MW
C.H. Aricota I	Hidráulica	EGESUR	Tacna	Candarave	Laguna Aricota	23.8 MW
C.H. Aricota II	Hidráulica	EGESUR	Tacna	Candarave	Laguna Aricota	11.90 MW
C.H. Pariac	Hidráulica de pasada	STATKRAFT	Ancash	Huaraz	Rio Pariac	4.9 MW
C.H. Huinco	Hidráulica de embalse	ENEL GENERACIÓN PERÚ	Lima	Huarochirí	Rio Santa Eulalia	258.4 MW
C.H. Huampaní	Hidráulica de pasada	ENEL GENERACIÓN PERÚ	Lima	Lima	Rio Santa Eulalia y Rio Rímac	31.4 MW
C.H. Charcani IV	Hidráulica	EGASA	Arequipa	Arequipa	Río Chili	14.4 MW
C.H. Cañón del Pato	Hidráulica	ORAZUL ENERGY PERÚ	Ancash	Huaylas	Río Santa, Reservorio San Diego	246.6 MW
C.H. Yaupi	Hidráulica de pasada	STATKRAFT	Junín	Junín	Río Paucartambo	108 MW)
C.H. San Antonio	Hidráulica de pasada	STATKRAFT	Arequipa	Caylloma	Río Caylloma	0.62 MW
С.Н. Моуоратра	Hidráulica de pasada	ENEL GENERACIÓN PERÚ	Lima	Lima	Rio Santa Eulalia y Rio Rímac	72 MW
C.H. San Ignacio	Hidráulica de pasada	STATKRAFT	Arequipa	Caylloma	Río Caylloma	0.5 MW
C.H. Huayllacho	Hidráulica de pasada	STATKRAFT	Arequipa	Arequipa	Río Caylloma	0.3 MW
C.H. Callahuanca	Hidráulica	ENEL GENERACIÓN PERÚ	Lima	Huarochirí	Rio Santa Eulalia y Rímac	86.2 MW

C.H. Charcani III	Hidráulica	EGASA	Arequipa	Arequipa	Río Chili	4.6 MW
C.H. Misapuquio	Hidráulica de pasada	STATKRAFT	Arequipa	Castilla	Río Misapuquio	3.8 MW
C.H. Malpaso	Hidráulica de embalse	STATKRAFT	Junín	Yauli	Rio Mantaro	54.4 MW
C.H. Pachachaca	Hidráulica de embalse	STATKRAFT	Junín	Yauli	Rio Yauli	9 MW
C.H. Oroya	Hidráulica de pasada	STATKRAFT	Junín	Junín	Rio Yauli	9 MW
C.H. Charcani II	Hidráulica de pasada	EGASA	Arequipa	Arequipa	Río Chili	0.6 MW

Fuente: Organismo Supervisor de Inversiones en Energía y Minería – OSINERGMIN Elaboración: ASISP


Número de centrales hidroeléctricas por región - 2024

REGIÓN	CENTRALES HIDROELÉCTRICAS
Puno	1
Pasco	1
Lambayeque	1
Tacna	2
Huánuco	2
Cajamarca	2
Cusco	3
Ancash	3
Huancavelica	4
Junín	7
Arequipa	10
Lima	11
TOTAL	47

Fuente: Organismo Supervisor de Inversiones en Energía y Minería – OSINERGMIN

Elaboración: ASISP

Comparativo del número de centrales hidroeléctricas por región – 2024

Fuente: Organismo Supervisor de Inversiones en Energía y Minería – OSINERGMIN Elaboración: ASISP

2.4 Centrales Hidroeléctricas concesionadas mediante Subasta RER (Recursos de Energía Renovables) en operación. Año 2024¹⁴

CENTRAL HIDROELÉCTRICA	TIPO DE CENTRAL	EMPRESA CONCESIONARIA	REGIÓN	PROVINCIAS	RECURSO HÍDRICO	POTENCIA INSTALADA
C.H. Manta	Hidráulica de pasada	PERUANA DE INVERSIONES EN ENERGÍA RENOVABLES S.A.	Ancash	Corongo	Río Manta	19,78 MW
C.H. 8 de Agosto	Fluyente	GENERACIÓN ANDINA S.A.C.	Huánuco	Huamalíes	Río Aucantagua	19 MW
C.H. El Carmen	Fluyente	GENERACIÓN ANDINA S.A.C.	Huánuco	Huamalíes	Río El Carmen	8,4 MW
C.H. Zaña 1	Hidráulica de pasada	ELECTRO ZAÑA S.A.C.	Cajamarca	San Miguel	Río Zaña	13,2 MW
C.H. Carhuac	Hidráulica de pasada	ANDEAN POWER S.A.	Lima	Huarochirí	Río Santa Eulalia	20 MW
C.H. Her 1	Hidráulica de pasada	ENEL GENERACIÓN PERÚ	Lima	Lima	Ríos Rímac y Santa Eulalia	0,7 MW
C.H. Ángel III	En cascada	GENERADORA DE ENERGÍA DEL PERÚ S.A.	Puno	Carabaya	Río Chiamayo	19,9 MW
C.H. Ángel II	En cascada	GENERADORA DE ENERGÍA DEL PERÚ S.A.	Puno	Carabaya	Río Chiamayo	19,9 MW
C.H. Ángel I	En cascada	GENERADORA DE ENERGÍA DEL PERÚ S.A.	Puno	Carabaya	Río Chiamayo	19,9 MW
C.H. Renovandes H1	Hidráulica de pasada	EMPRESA DE GENERACIÓN ELÉCTRICA SANTA ANA S.R.L.	Junín	Chanchamayo	Río Huatziroki	20 MW

¹⁴ Fuente: Órgano Supervisor de la Inversión en Energía y Minas (OSINERGMIN) "Supervisión de contratos de proyectos de generación y transmisión de energía eléctrica en operación" (Noviembre, 2024) https://www.osinergmin.gob.pe/seccion/centro documental/electricidad/Documentos/Publicaciones/Compendio-Proyectos-GTE-Operacion.pdf

C.H. Yarucaya	Derivación	HUAURA POWER GROUP S.A.	Lima	Huaura	Río Huaura	17,5 MW
C.H. Potrero Hidráulica de pasada EMPRESA ELÉCTRICA AGUA AZUL S.A.		Cajamarca	San Marcos	Río Crisnejas	19,9 MW	
C.H. Rucuy	Hidráulica de pasada	EMPRESA DE GENERACIÓN ELÉCTRICA RIO BAÑOS S.A.C.	Lima	Huaral	Río Chancay	20 MW
C.H. Chancay	Hidráulica de embalse	SINERSA	Lima	Huaral	Río Chancay	19,2 MW
C.H. Canchayllo	Hidráulica de toma de agua	EMPRESA DE GENERACIÓN CANCHAYLLO S.A.C.	Junín	Jauja	Río Pachacayo	5,26 MW
C.H. Runatullo II	Hidráulica Fluyente	EMPRESA DE GENERACIÓN ELÉCTRICA DE JUNÍN S.A.C.	Junín	Concepción	Río Runatullo	19,1 MW
C.H. Runatullo III Hidráulica de embalse EMPRESA DE GENERACIÓN ELÉCTRICA DE JUNÍN S.A.C.		Junín	Concepción	Río Runatullo	20 MW	
C.H. Las Pizarras	Hidráulica de pasada	ELÉCTRICA RÍO DOBLE S.A.	Cajamarca	Santa Cruz	Río Chancay	18 MW
C.H. Yanapampa	Hidráulica de embalse	ELÉCTRICA YANAPAMPA S.A.C.	Ancash	Ocros	Río Pativilca	4,13 MW
C.H. Huasahuasi II	Hidráulica de embalse	EGEJUNIN	Junín	Tarma	Ríos Huasahuasi y Huacuas	10 MW
C.H. Nuevo Imperial	(No precisa)	HIDROCAÑETE S.A.	Lima	Cañete	Río Cañete	3,97 MW
C.H. Huasahuasi I Hidráulica de embalse EGEJUNIN		Junín	Tarma	Ríos Huasahuasi y Huacuas	10 MW	
C.H. Purmacana	Hidráulica de pasada	ATRIA ENERGÍA S.A.C.	Lima	Barranca	Río Pativilca	1,8 MW
C.H. Roncador	Hidráulica de pasada	MAJA ENERGÍA S.A.C.	Lima	Barranca	Rio Pativilca	3,8 MW

C.H. Santa Cruz II	C.H. Santa Cruz II Hidráulica de pasada EGEJUNIN (ANTES HIDROELECTRICA SANTA CRUZ S.A.C.)		Ancash	Huaylas	Río Blanco	6 MW
C.H. La Joya	Hidráulica de pasada	GENERADORA DE ENERGÍA DEL PERÚ S.A.C.	Arequipa	Arequipa	Río Chili	10,46 MW
C.H. Santa Cruz I	Hidráulica de pasada	EGEJUNIN (ANTES HIDROELECTRICA SANTA CRUZ S.A.C.)	Ancash	Huaylas	Río Blanco	6 MW
C.H. Poechos II	Hidráulica de pasada	SINERSA	Piura	Sullana	Reservorio Poechos	10 MW
C.H. Caña Brava	Hidráulica de pasada	ORAZUL ENERGY EGENOR	Cajamarca	Chota	Rio Chancay	6 MW
C.H. Carhuaquero IV Hidráulica de pasada ORAZUL ENERGY EGENOR		Cajamarca	Chota	Rio Chancay. Reservorio Cirato	10 MW	

Fuente: Organismo Supervisor de la Inversión en Energía y Minas – OSINERGMIN Elaboración: ASISP

2.5 Proyectos en centrales hidroeléctricas al mes de diciembre 2024¹⁵

Nombre de Proyecto	Estado	Puesta en Operación Comercial (*)	Avance actual	Capacidad Instalada (MW)	Inversión (Mill. USD)
C.H. Alto Biavo	Estudios	30/07/2034	0%	302.00	552.70
C.H. Anto Ruiz III	Estudios	9/03/2027	1%	102.10	190.40
C.H. Anto Ruiz IV	Estudios	18/03/2028	0%	103.80	201.20
C.H. Centauro I	Construcción	(*)	65%	12.50	25.30
C.H. Chancay 2	Estudios	4/07/2027	4%	16.60	49.00
C.H. Chancay 3	Estudios	11/05/2028	5%	13.50	39.80
C.H. Huallaga I	Estudios	31/12/2027	0%	392.00	988.50
C.H. Huatziroki	Construcción	10/05/2025	7%	19.20	25.60
C.H. Lluclla	Estudios	10/04/2027	0%	288.00	489.73
C.H. Moquegua 1	Estudios	13/06/2028	0%	15.30	48.70
C.H. Moquegua 3	Estudios	13/06/2028	0%	18.70	54.60
C.H. Pachachaca 2	Estudios	1/05/2026	0%	19.80	24.41
C.H. San Gabán III	Construcción	28/07/2025	79%	209.30	438.00
C.H. Santa Teresa (Ampliación de potencia)	Estudios	8/02/2026	0%	40.40	104.53
C.H. Santa Teresa II	Estudios	7/04/2028	0%	280.00	560.00
C.H. Tingo	Construcción	8/04/2028	6%	15.00	44.00
CC.HH. Limacpunco, Ttio y Capiri	Estudios	3/10/2031	5%	195.00	379.13
C.H. Anashironi	Estudios	9/01/2026	0%	20.00	6.50

Fuente: Ministerio de Energía y Minas Elaboración: ASISP

Ver: https://www.investinperu.pe/RepositorioAPS/0/0/JER/CENTRALESHIDROELECTRICAS2010_DOCS_BASES/Bases%20-%20LPI%20CH%20(va%2021-09-10).doc

^(*) La fecha de puesta en operación comercial corresponde a aquella aprobada por el COES, para el inicio comercial de la Central Hidroeléctrica en el SEIN, autorizado por el COES. (Fuente: PROINVERSION. "Bases de la Licitación Pública Internacional. Proyecto: Energía de Centrales Hidroeléctricas"

¹⁵ Ministerio de Energía y Minas. Dirección General de Electricidad. "Principales indicadores del Sector Eléctrico a Nivel nacional. Enero 2025 (Cifras preliminares al mes de diciembre 2024) https://cdn.www.gob.pe/uploads/document/file/7696434/5357964-cifras-preliminares-del-sector-electrico-diciembre-2024.pdf

3. INFRAESTRUCTURA PARA RECARGA DE VEHÍCULOS ELÉCTRICOS

3.1 Marco normativo aplicado

a) Resolución Ministerial 250-2019-MINEM/DM¹⁶

Publicada el 28 de agosto del 2019.

Norma por la cual se aprueba la publicación del proyecto de decreto supremo "Disposiciones para facilitar el desarrollo del mercado de vehículos eléctricos e híbridos y su infraestructura de Abastecimiento" y su Exposición de Motivos, para recibir los aportes de los agentes involucrados en los distintos ámbitos de la movilidad eléctrica y de la ciudadanía en general.

Estas normas responden a los compromisos internacionales suscritos por el Estado peruano, como el Acuerdo de Paris en la COP 21, para tener un mayor control de las emisiones de gases de efecto invernadero en el país; considerando que las actividades de transporte son una de las principales fuentes de emisiones contaminantes.

Asimismo, se busca promover una cultura enfocada en el uso racional de los recursos energéticos para el desarrollo económico sostenible del país, de modo compatible con la conservación del medio ambiente. Para lo cual, se requiere contar con la mayor eficiencia en la cadena productiva y de uso de la energía causando el mínimo impacto ambiental y bajas emisiones de carbono.

b) <u>Decreto Supremo 022-2020-EM. Aprueba disposiciones sobre infraestructura de carga y abastecimiento de energía eléctrica para la movilidad eléctrica.¹⁷</u>

Publicado el 22 de agosto de 2020.

Norma por la que se aprueban disposiciones referidas a la infraestructura de carga y abastecimiento de energía eléctrica para la movilidad eléctrica, para hacer un uso más eficiente de la energía y reducir el consumo de combustibles fósiles, disminuyendo la emisión de gases de efecto invernadero y otras emisiones contaminantes contribuyendo a reducir los daños en la salud pública.

c) <u>Decreto Supremo N° 036-2023-EM. Decreto Supremo que aprueba el Reglamento para la Instalación y Operación de la Infraestructura de Carga de la Movilidad Eléctrica¹⁸</u>

Publicado el 31 de diciembre de 2023.

Este reglamento establece los requisitos mínimos para la instalación, operación, seguridad y mantenimiento de las infraestructuras de carga de vehículos eléctricos.

Su objetivo es garantizar que la transferencia de energía se realice de manera segura y confiable, minimizando riesgos para las personas y las edificaciones.

_

RM. 250-2019-MINEM/DM. https://cdn.www.gob.pe/uploads/document/file/356794/RM <a href="https://cdn.www.gob.pe/uplo

¹⁷ DS. 022-2020-EM. https://cdn.www.gob.pe/uploads/document/file/1258467/DS%20N%C2%B0%20022-2020-EM.pdf

¹⁸ DS. 036-2023-EM. Reglamento para la Instalación y Operación de la Infraestructura de Carga de la Movilidad Eléctrica. https://busquedas.elperuano.pe/dispositivo/NL/2249540-3

Además, diferencia entre puntos de acceso privado y público, promoviendo una expansión ordenada de la red de carga en el país.

Este Reglamento crea un marco normativo para la instalación y operación de los puntos de carga para vehículos eléctricos, con el objetivo de garantizar seguridad, eficiencia y accesibilidad.

La norma define los tipos de cargadores permitidos y sus características; los requisitos técnicos para la instalación y operación de las estaciones de carga; se establecen estándares de seguridad para evitar fallos eléctricos y riesgos para los usuarios.

Se agrupa la infraestructura en función de su potencia y su ubicación (carga doméstica, carga en edificios comerciales, estaciones públicas, etc.). Esto permite que cada tipo de instalación cumpla con normas específicas para su uso y mantención.

Se exige que los puntos de carga cumplan con normas técnicas nacionales e internacionales, estableciendo la obligación de contar con dispositivos de protección y señalización adecuados.

Se fomenta que tanto hogares como empresas puedan instalar puntos de carga de manera sencilla desarrollando una red de carga pública, evitando monopolios y asegurando el acceso equitativo.

Se exige que las estaciones de carga informen claramente sobre tarifas y tiempos de carga estimados.

3.2 <u>La infraestructura de carga de vehículos eléctricos como factor para el impulso de</u> la movilidad eléctrica

De acuerdo al "Plan Nacional de Electromovilidad" formulado por la Asociación Automotriz del Perú¹⁹ la instalación de las estaciones de recarga para vehículos eléctricos, ha sido principalmente impulsado por el sector privado, en un esfuerzo por promover la aplicación de la tecnología en el desarrollo de un transporte más limpio.

2020 - Iniciativa privada liderada por ENEL X. La empresa ha instalado más de 40 puntos de carga en 23 ciudades, inaugurando así la primera red de electrolineras del país. Los cargadores equipados en las electrolineras tienen una capacidad de carga equivalente a cargar el vehículo en 7 horas. (COES, 2019) (ENEL X, 2020).

Asimismo, en el 2019 Primax junto con Schell inauguraron el primer cargador rápido en una estación de servicio en la estación Primax Castaños, en la avenida Javier Prado Oeste 1895 (Electro Transporte, 2019).²⁰

Este plan considera prioritario, el desarrollo de infraestructura, a través del fomento de redes de carga rápida (Electrolineras) mediante inversión pública directa o Asociaciones Publico Privadas (APP´s); la instalación de estacionamientos con cargadores en zonas céntricas de alta congestión y centros comerciales; así como, la instalación de cargadores domésticos en las nuevas

²⁰ lbíd.

-

¹⁹ Fuente: Asociación Automotriz del Perú. https://aap.org.pe/descarga/electromovilidad/Plan-Nacional-de-Electromovilidad.pdf

edificaciones. Medidas propuestas en el marco de la promoción de energías renovables distribuidas para las estaciones de carga y la adaptación de nuevas tecnologías para una ciudad autosostenible con vehículos eléctricos y autónomos.

Respecto a los desafíos relacionados a la capacidad de las redes de distribución producto de la carga de vehículos electrificados; se evalúa que, en la medida, que la demanda de dicha tecnología vaya aumentando en los próximos años, se hará más compleja la organización y gestión de una red de estaciones de servicio de recarga vehicular.

La mayor demanda de vehículos eléctricos afectará la demanda de energía en las redes de distribución, por tanto, un aumento natural de la potencia de punta del sistema; generando una carga adicional que podría afectar la confiabilidad del sistema y problemas de congestión en las redes de distribución, con el riesgo de colapso de los alimentadores y transformadores que no hayan sido diseñados con este fin. Este riesgo se incrementa con la instalación de infraestructura de carga rápida, que demanda la misma cantidad de energía en menos tiempo.

El consumo de energía con vehículos eléctricos podría resultar difícil de predecir y es más incierta aun la forma en la que se comportará el sistema con la introducción de esta nueva tecnología ya que, por ejemplo, en horas de máxima demanda se podrían presentar situaciones de congestión importante en las redes de distribución.

Para afrontar esos desafíos, se proponen medidas de política pública que se enfoquen en los diferentes actores de la cadena; como son por ejemplo: incentivos tributarios (exoneración del IR y crédito fiscal) para la inversión en infraestructura e instalación de estaciones de recarga; modificaciones en los modelos de las centrales de generación y redes de distribución eléctrica para afrontar el impacto de una mayor demanda de energía, sin afectar el consumo en otras actividades; impulso a la modificación de hábitos de consumo (como tarifas diferenciadas para recargas nocturnas) entre otras medidas.

Es importante resaltar que los mayores impactos se observarán en las redes de distribución residenciales. Por ello, las medidas implementadas sobre la demanda residencial en relación con las tarifas y flexibilidad en el precio resultan relevantes. (...) En paralelo existirá un tipo de demanda menos flexible, asociada a puntos de carga tales como flotas de buses, flotas de taxis, electrolineras públicas y otros espacios de carga para el transporte de mercancías o industrial. Estos puntos, requerirán de infraestructura de carga rápida para asegurar varios ciclos de carga diarios.

Adicionalmente, este nivel de consumo requiere de infraestructura eléctrica y de transporte especializada tales como puntos de carga rápida (electrolineras e infraestructura de carga para flotas). Cabe resaltar que, un buen diseño tomaría en consideración que su localización física y eléctrica sea óptima, y permita la búsqueda del punto adecuado que combine las decisiones de transporte y la disponibilidad de la red eléctrica robusta y con capacidad para minimizar los costos de inversión.

En contrapartida, es a su vez una interesante oportunidad de crecimiento del negocio de la distribución eléctrica, en particular de la infraestructura de distribución; la IEA estima que la demanda eléctrica global podría crecer un 4% al año 2030 gracias a las proyecciones de electromovilidad impactando positivamente las proyecciones de crecimiento del sector (IEA, 2020).

3.3 Relación de las estaciones de recarga de vehículos eléctricos (electrolineras) en operación. Año 2024²¹

En la actualidad, existen 41 estaciones de recarga de vehículos eléctricos las cuales están ubicadas según se detalla a continuación

Punto de carga	Ciudad	Marca	Potencia	Cargadores	Conectores	Tipo de Cargador	Dirección
Instituto SENATI Casma	Áncash	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Reyna Mz. T Lote 6 - Casma
Instituto SENATI Chimbote	Áncash	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Universitaria, Nuevo Chimbote 02712
Hotel Turista	Apurímac	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Circunvalación 1515, Abancay 03001
Instituto SENATI – Andahuaylas	Apurímac	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Avenida Sesquicentenario 180, Talavera 03701
Hotel Turistas Chala	Arequipa	JuiceBox 2.01, Enel X Way	7.4 kW	1	1	Cable Tipo 2	Cal. Comercio 601, Chala 04501
Hotel Punta Arena Camaná	Arequipa	JuiceBox 2.01, Enel X Way	7.4 kW	1	1	Cable Tipo 2	Ctra. Panamericana S km 840, La Punta 04445
DM Hotel	Ayacucho	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Jr. Atahualpa 184, Ayacucho 05003
Hotel Wilkamayu	Cusco	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Confederación 420, Sicuani 08254
Real Plaza Cusco	Cusco	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Alfredo Yepes Miranda 6, Cusco 08003
Hotel Sol Natura	Cusco	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	1	Cable Tipo 1	Av. Ferrocarril 633, Ollantaytambo
Instituto SENATI Pisco	lca	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Urb. Residencial Paracas, Calle #4 S/N
EE.SS. El Ovalo de Ica	lca	C6EU/060-JC, XCharge	60 kW	1	1	CCS2- CHAdeMO	Ctra. Panamericana S 311, Ica 11004

²¹ Fuente: Asociación Automotriz del Perú. Fecha de consulta 7/3/2025. Ver: https://aap.org.pe/electrolineras-en-el-peru/

Hotel Casa Hacienda Nasca Oasis	Ica	JuiceBox 2.01, Enel X Way	7.4 kW	1	1	Socket Tipo 2	Panamericana Sur Km 449, El Carmen de Pangaravi
Real Plaza Huancayo	Junín	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Ferrocarril S/N, Huancayo 12001
Hotel Los Portales	Junín	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Castilla 512, Tarma 12651
Mannucci - Audi Trujillo	La Libertad	DB DC 30 KW, Enel X Way	30 KW	1		CCS2	Av. América Norte 2493, Trujillo
Hotel El Faro – Pacasmayo	La Libertad	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	1	Cable Tipo 1	Urbanización la Perla, Manzana m, Lote S/N, Pacasmayo 13811
Hotel Hilton Garden Inn Trujillo	La Libertad	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	1	Cable Tipo 1	Av. El Golf 591, III 13009
Hotel Hilton Garden Inn Trujillo	La Libertad	JuiceBox 2.01, Enel X	7.4 kW	1	1	Cable Tipo 2	Av. El Golf 591, III 13009
Real Plaza Chiclayo	Lambayequ e	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Miguel de Cervantes 300, Chiclayo 14008
Hotel Casa Andina Chiclayo	Lambayequ e	JuiceBox 2.01, Enel X Way	7.4 kW	1	1	Cable Tipo 2	Federico Villarreal 115, Chiclayo 14009
Repsol El Parque	Lima	C6EU/060-CC, XCharge	60 kW	1		CCS2x2	Av. Guardia Civil 1090 - San Isidro
Mall Cencosud La Molina	Lima	JuiceBox 3.0, Enel X Way	22 kW	15		Socket Tipo 2	Av. Raúl Ferrero 1355
Hotel Casa Andina	Lima	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Calle Schell 452, Miraflores 15074
Hotel Chavín	Lima	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Antigua Panamericana Nte. 222, Barranca 15169
Grifo KIO	Lima	C6EU/060-JC, Xcharge	60 KW	1	1	CCS2- CHAdeMO	Carr. Panamericana Sur 245, Lurín
Peaje Huánuco (ex LIMA EXPRESA - BASE HUÁNUCO)	Lima	C6EU/060-CC, XCharge	60 kW	1	2	CCS2x2	Peaje Huánuco de la Línea Amarilla, sentido hacia el Aeropuerto
Grifo San Pedro de Mala	Lima	C6EU/060-JC, XCharge	60 kW	1	1	CCS2- CHAdeMO	km 86.5, Ctra. Panamericana Sur

Volvo - Megaplaza Box 02	Lima	JuiceBox 2.01, Enel X Way	7.4 kW	2	1	Cable Tipo 2	CC Megaplaza
Volvo - Megaplaza Box 01	Lima	JuiceBox 2.01, Enel X Way	7.4 kW	2	1	Cable Tipo 2	CC Megaplaza
EESS GESA - Primax Chorrilos	Lima	C6EU/060-CC, XCharge	60 kW	1	1	CCS2x2	Km. 18.5, 1S, Chorrillos
Hotel Venecia Ilo	Moquegua	JuiceBox 2.01, Enel X Way	7.4 kW	1	1	Cable Tipo 2	Callao 527, Ilo 18601
SENATI CFP	Pasco	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Daniel Alcides Carrión 308, Cerro De Pasco 19001
Hotel Casa Andina	Piura	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Ramón Mujica s/n Urb. San Eduardo, El Chipe, Piura, Piura
Hotel Casa Andina	Piura	JuiceBox 2.01, Enel X	7.4 kW	1	1	Cable Tipo 2	Av. Ramón Mujica s/n Urb. San Eduardo, El Chipe, Piura, Piura
Casa Andina Premium	Puno	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Av. Sesquicentenario 1970, Sesquicentenario 1970, Puno
Terminal Terrestre Ayaviri – Ayaviri	Puno	JuiceBox Pro 40 Legacy, Enel X Way	9.6 kW	1	2	Cable Tipo 1	Ayaviri 21866
Hotel Casa Andina Tacna	Tacna	JuiceBox 2.01, Enel X Way	7.4 kW	1	1	Cable Tipo 2	Av. Billinghurst 170, Tacna 23003
Hotel Punta Sal	Tumbes	JuiceBox 2.0, Enel X	7.4 KW	2	2	Cable Tipo 2	Carretera Sullana Tumbes Km. 173 - Contralmirante Villar, Canoas de Punta Sal, Tumbes
Casa Andina Zorritos	Tumbes	JuiceBox 2.01, Enel X Way	7.4 kW	1	1	Cable Tipo 2	Carretera Panamericana Norte Km. 1232, Bocapán, Zorritos

Fuente: Asociación Automotriz del Perú Elaboración: ASISP